Objectives of the training:
•Understand the FLAC2D/ FLAC3D numerical approach and the types ofproblems it can solve•Know how to manipulate the FLAC2D/ FLAC3D user interface to access andinterpret results•Follow the recommended solution procedure to simulate a simple case
This example uses AE location data with waveforms. It is designed to give you an overview of the 3D and waveform Visualisers. The data is from two example clusters of AE events located around the clay bulkhead of CNL’s (formerly AECL) TSX experiment.
This example uses AE location data without waveforms. It is designed to give you an overview of the Location Visualiser.
This example uses Acoustic Emission (AE) location data recorded during the pressurisation, heating and cooling of SKB’s Prototype test at the Äspö Hard rock Laboratory (Sweden)
Two examples are shown here using Acoustic Emission (AE) data from a true-triaxial test on a cubic sandstone sample. The data is from a laboratory experiment at Imperial College London for the EC-funded SAFETI project
The stages of construction of a concrete diaphragm wall are simulated with FLAC. The analysis begins with the concrete diaphragm wall cast in place. Dewatering, excavation and installation of support struts are simulated in five excavation stages. Distribution of shear forces and bending moments in the wall, axial forces in the struts and displacements of the soil behind the wall are calculated during the five stages.
Post pillars are created when mechanized cut-and-fill stopes are mined on all sides. A FLAC model studies the potential instability of the pillars. Axisymmetric geometry in FLAC provides a reasonable representation of the three-dimensional condition.
In the pharmaceutical industry, the overall performance of a continuous, binary powder mixer is measured by how well components are mixed, limitations of the recirculating regions, how much shear is experienced by particles, and how little product must be discarded at startup before a reliable steady-state mixture is achieved.
This example describes the excavation of a tunnel modeled by an assembly of bonded tetrahedral blocks. Cable support is also simulated.
The failure mode of cemented backfill pillars is studied with FLAC. A sliding interface is used to represent the orebody-sandfill contact to allow downward settling of sand during collapse. The model is run in large-strain mode to illustrate the active collapse of the pillar.
A braced excavation is constructed in saturated ground. The construction stages, dewatering, excavation and braced support construction are simulated with FLAC.
FLAC simulates the excavation and installation of lining support for an advancing monolithic precast concrete shaft. The simulation is performed using the axisymmetric geometry configuration in FLAC.
This example presents a FLAC model that demonstrates a recommended procedure to simulate seismic loading of an embankment dam.
A seismic hazard concern in the design of pile-supported wharves at port waterfronts is the structural stability of the wharf if earthquake induced liquefaction occurs in the soils supporting the piles. Calculations can be made with FLAC for both the deformation of the liquefiable soils and the displacements and loading of the wharf structure that are induced by the earthquake motion.
The response of a saturated soil foundation to an embankment load is studied with FLAC. The soil behavior is represented by a Cam-clay material model. The pore pressure build up and dissipation in the foundation soil and the settlement beneath the embankment are calculated during undrained and drained loading. This is a fully coupled mechanical-fluid flow calculation.
The simulation of a test wall construction in well-graded sand is performed with FLAC. The construction steps include eight excavation stages with shotcrete, tiebacks and soil nails emplaced as support at each stage. The tiebacks are pretensioned to a specific lockoff load. Development of forces in the support and soil deformation are monitored throughout the construction process.
A deep excavation in Berlin sand is a benchmark problem for the Cysoil and PH (plastic hardening) soil models in FLAC. The simulation follows the construction sequence: install diaphragm wall, dewater, excavate in four stages and install pre-tensioned anchors at each stage.
A circular lined tunnel is constructed in saturated ground. The ground is dewatered during construction. The tunnel is supported by a temporary shotcrete liner, which is installed while the tunnel excavation is advanced.
The effectiveness of flying buttresses in a supporting a thin-walled arch is investigated with a 3DEC model. The structure is simulated as a collection of rigid blocks and the deformation under gravity loading is observed. The model is run with and without buttresses to examine their effect.
This example uses Microseismic location data recorded during the Hydraulic Fracturing of an Enhanced Geothermal system at depths over 3km at Soultz-sous-Forêts (France) and is used by kind permission of The European Hot Dry Rock project (HDR)
FLAC simulates the four excavation stages and three construction steps within each stage for a multistage tunnel excavation and construction. The convergence-confinement method is used to simulate the effect of the tunnel advance.
End-bearing piles are used to support highway embankments constructed over soft foundation soils. A FLAC analysis is performed for the initial, undrained construction stage of a highway embankment over a soft saturated foundation.
FLAC is applied to study the behavior of progressively collapsing pillars. The effect of backfill confinement is evaluated by comparing different scenarios: no backfill, tight backfill and backfill with a 10 cm gap between the backfill and the roof.
The stability of a slope subjected to rainfall events of increasing intensity and decreasing duration is analyzed with FLAC. The apparent cohesion provided by capillary forces in unsaturated soil is simulated using the two-phase fluid flow logic.
This example demonstrates the use of PFC to model a pile of rock boulders sliding down a slope. The slope is represented by a DXF surface that is imported into PFC and automatically converted to wall facets.
This example presents a UDEC analysis of the Checkerboard Creek Rock Slope, British Columbia, Canada to assess potential rockslide run-out characteristics. A Voronoi tessellation scheme is used to create a rock fabric that allows the moving rock slope to disaggregate.
Two examples are shown here from the Microseismic data recorded following the excavation of the Mine-by gallery at CNL’s (formerly AECL) Underground Research Laboratory.
Pull-out tests on grouted cable bolt anchors are simulated with FLAC. Grout is represented as a cohesive and frictional material with confining stress dependence. Results are presented as axial force–deflection curves.
Three slope stability problems are studied with FLAC. First, a slope in sand with zero cohesion is modeled. Then, a small cohesion is added to the material and stability is reexamined.
Stress relaxation in rock after excavation of a circular water tunnel and installation of a liner is examined with FLAC. The liner is installed and pressurized instantaneously to permit the stress field to respond to radial strain in the liner.
Swelling deformations of a fully wetted slope are calculated in FLAC using the swell constitutive model. Wetting is simulated by activating the swell model.
The stress and pore pressure changes due to expansion of a pressuremeter in a saturated clay are analyzed with FLAC. The pressuremeter is simulated with the axisymmetric geometry configuration, and the clay is represented by the Cam-clay material model.
This example demonstrates the use of UDEC to model a tunnel excavation in a jointed rock mass.
A simple pile with a hollow setup is shown in this example, which is typically used for the foundation setup of offshore wind energy turbines. During the simulation, the pile will intrude into the soil ground material, which is generated of PFC particles
Simulation of a wire gabion is performed in FLAC3D coupled with PFC.
This example demonstrates the use of PFC to model conveyer systems, which are often used in the pharmaceutical, chemical, materials processing, and agricultural engineering industries
The complex process of roof collapse behind an advancing longwall coal face is investigated by setting up a two-dimensional stratified UDEC model.
This example describes the excavation of a tunnel modeled by an assembly of bonded tetrahedral blocks in 3DEC version 7. Hybrid bolt support is also simulated
The model simulates the SE corner of the Parthenon subjected to earthquake loading.